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Large deformations of thin elastic plates and shells present a formidable problem in continuum mechanics
that is generally intractable except by numerical methods. Conventional approaches break down in the limit of
small plate thickness due to the appearance of discontinuities in the solution that require a boundary layer
treatment. We examine a simple case of a plate bent by forces exerted along its boundary so as to create a sharp
crease in the limit of infinitely small thickness. We find a separable boundary layer solution of the von Karman
plate equations that is valid along the ridge line. We confirm a scaling argument [T. A. Witten and Hao Li,
Europhys. Lett. 23, 51 (1993)] that the ridge possesses a characteristic radius of curvature R given by the
thickness of the sheet & and the length of the ridge X, viz., R~h'3X%3. The elastic energy of the ridge scales
as E~«(X/h)', where « is the bending modulus of the sheet. We determine the dependence of these
quantities on the dihedral angle of the ridge 7—2a. For all angles R~a~*? and E~ a’?. The framework
developed in this paper is suitable for the determination of other properties of ridges such as their interaction
or behavior under various types of loading. We expect these results to have broad importance in describing

APRIL 1996

forced crumpling of thin sheets.

PACS number(s): 3.40.Dz, 46.30.—1, 68.55.Jk

L. INTRODUCTION

Mechanical properties of a thin elastic sheet undergoing
large distortions is a rich problem that is still largely unre-
solved despite great effort [2]. The postbuckling behavior of
thin-walled structures is of importance in safety design and
in development of energy absorbing structures [3,4]. Some
microscopic solidlike membranes can also be found in a
crumpled state. Examples of such membranes include phos-
pholipid bilayers below the two-dimensional (2D) freezing
point [5], networks of tropomyosin [6], and monomolecular
layers such as graphite oxide [7] or molybdenum disulfide
[8]. In an entirely different context, formation of mountain
ranges is a result of strong deformation of earth’s tectonic
plates, which to an extent behave as elastic sheets [9].

Several types of distortion in elastic membranes have
been analyzed recently. Thermal fluctuations of a flat mem-
brane roughen the surface, but preserve its overall flat shape
[10]. The surface is thought to lose its flatness for sufficiently
high temperature, at the “crumpling transition.”” By contrast,
certain defects deliberately introduced into flat membrane
destroy its flatness. The energy associated with these distor-
tions is well understood [11]. Different distortions occur
when a flat membrane is collapsed by an external force. The
incipient deformation in response to a load and the associ-
ated buckling instabilities are classic subjects of continuum
mechanics [12,13].

Large deformations of thin plates and shells can be de-
scribed by two coupled quadratic fourth-order partial differ-
ential equations whose explicit solution exists only in a few
cases [ 14]. The main complication is, however, that the small
parameter related to the thickness of the shell usually multi-
plies the highest derivative or the nonlinear term in the equa-
tions [15]. This leads to formation of boundary layers in the
asymptotic limit of small shell thickness. An example in
which such a boundary layer appears is a thin plate bent by
torques applied at the boundary analyzed by Kelvin, Tait, and
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Friedrichs [16]. Other well-known boundary layer phenom-
ena that include the Prandtl boundary layer in a flow at large
Reynolds numbers [17] arise under similar conditions.

The different character of the boundary layer problem
considered in this article is in its potential relevance to a
broad range of crumpling phenomena. A number of empirical
studies have investigated the statistical scaling properties of
the crumpled state [18—20]. Current theoretical understand-
ing of this forced crumpling is in its initial stages however. It
was argued in Ref. [21] that the structure of a thin crumpled
sheet can be thought of as a collection of flat facets bound by
a network of straight ridges that terminate at sharp vertices.
These ridges have the same nature as the boundary layer
arising in a simple geometry considered in this article. The
scaling properties of the boundary layer solution allow one to
make far-reaching conclusions about the morphology and the
elastic energy of a crumpled thin sheet.

In Sec. II we derive the equations that describe large de-
flections of thin elastic plates and introduce the boundary
value problem that exhibits the ridge singularity. Scaling
properties of this boundary layer are examined in Sec. III. A
separation of variables ansatz is introduced in Sec. IV. The
ansatz implies that the local properties of the ridge solution
scale with the distance from the boundary in a simple way. In
Sec. V we derive the scaling of the separable solution with
the dihedral angle of the ridge «. From here on we will refer
to « as the “dihedral angle” even though it is one-half of the
difference of the dihedral angle from 7r. Confusion is un-
likely to result since this is the only way « is used in the
paper. Corroborating numerical evidence is presented in Sec.
VI. Finally, the implications of the thickness scaling for the
crumpling problem and the validity of the separable solution
as well as future work are discussed in Sec. VIL.

IL. von KARMAN PLATE EQUATIONS

We start with a brief review of the theory of large deflec-
tions of thin plates originally due to von Karman [22]. The
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equations are usually obtained within an expansion scheme
of the full three-dimensional elasticity equations with the
thickness of the plate as a small parameter. Small strains and
a linear stress-strain relation are usually assumed [23]. We,
however, prefer to derive the equations in a somewhat dif-
ferent way that is more instructive while not as rigorous as
the thickness expansion method.

When the thickness of the plate is small the in-plane
stresses are much greater than the normal stresses, so that the
dependence of the in-plane stresses on the normal coordinate
is simple [12]. Then, all variables can be integrated over the
thickness of the plate and it can be treated as a two-
dimensional surface. The plate has a preferred material coor-
dinate system xe D, some open simply connected domain in
R2. According to the fundamental theorem of surfaces [24],
to define a surface uniquely up to an overall translation and
rotation in R it is sufficient to specify two symmetric ten-
sors in D: a metric tensor g,z and a curvature tensor C,g
satisfying a set of relations, which we will write down
shortly. To clarify the meaning of these tensors we first note
that the strain tensor v,z is defined as the deviation of the
metric tensor from the identity

8ap™ 5aﬁ+27a/3~ (1)

The sum of the eigenvalues of the strain tensor y;+ vy, is
the (2D) expansion (or compression) factor and their differ-
ence is the shear angle [12]. The eigenvalues of the curvature
tensor, on the other hand, are the inverses of the two princi-
pal radii of curvature of the surface. Given the three-

dimensional position f'(x1 ,X3) of the material point
(x1,x,), the metric tensor and the curvature tensor are given
by [24]

Gap=(3,T)- (IgT), @)
Cop=0" (9,9 T), (3)

where n is the unit normal and d, denotes differentiation
with respect to the material coordinate x,. To be absolutely
rigorous one must distinguish upper and lower indices, but
since we define all quantities to first nontrivial order in the
strain 7,z and raising and lowering of the indices is accom-
plished by applying the metric tensor g4, raising and low-
ering indices only affects higher-order terms in y,z.

In order for the tensors g,z and C,z to define a surface
they must satisfy two relations involving the Christoffel sym-
bols I', g, [24], which are defined in terms of the metric
tensor. When the strains are small the expression is particu-
larly simple:

FaB,u: _&u7a5+aa73M+037au- (4)

The first relation that g .4 and C, z must satisfy in order to
define a surface is the Gauss Theorema Egregium [24]. It
expresses the Gaussian curvature K=detC,g, which is the
determinant of the curvature tensor in terms of the Christof-
fel symbols. In the case of small and slowly varying strain
li.e., 2y>(dv)?] the Gauss theorem reads

K=0,1511= 3,0 200+ T 11pl pon =T 15,0 21
= drxaﬁ’)/aﬁ_ Vztr‘yalB > (5)

where V2=8M(?M. Summation over repeated indices is im-
plied. Geometrically, the Gauss equation captures the intui-
tive notion that nonzero Gaussian curvature (the sheet curves
in both directions) must cause the sheet to strain. Due to
historical reasons Eq. (5) in this context is usually referred to
as the first von Karman equation.

The other set of relations usually termed Codazzi-
Mainardi equations describes how the curvature tensor be-
haves when transported around a closed curve. Again, when
the strains and consequently the Christoffel symbols are
small, these relations are simple. They say that if the curva-
ture tensor is parallel transported around a closed curve, the
change is of higher order in the strain [24]

ﬂycaﬁ=0ﬁcay. (6)

These equations are a tensor analogy of the condition satis-
fied by an irrotational vector field. An irrotational vector field
can be written as a gradient of a scalar; similarly, there exists
a scalar function f such that

Equations Eq. (5) and (6) ensure that C,z and v,z de-
scribe a physical surface. We now consider further conditions
that ensure that each element of the surface is in mechanical
equilibrium. The forces and the torques acting on an infini-
tesimal element of the surface dxdJy can be found from the
the stress tensor o,z and the torques M,z [14] as shown in
Fig. 1(a) and 1(b). The force tensors are related to the defor-
mation tensors v,z and C,z by the constitutive relations for
an elastic body. For sufficiently small strains,

Yh
o-aﬁzl__;f[‘)’aﬂ—’- VEQpEBT)/pT]’ (8)
where 4 is the plate thickness, Y is the Young modulus, and
v is the Poisson ratio of the elastic material [12]. Here €,z is
the two-dimensional antisymmetric tensor. There is a similar
relation for the torques per unit length

MaB:K[CaB+ VeapEBTCpT]’ (9)

which comes from considering the stress distribution
throughout the thickness of the plate & [14]. Here
k=Yh3/12(1—v?) is the bending rigidity of the plate [12].
The in-plane force equilibrium can be written down by in-
spection [see Fig. 1(a)]. It reads

This condition allows one to write the stresses in terms of a
scalar potential y traditionally called the Airy force function:

O op= €0, €p00,0,X- (11)

This relation is a tensor analog of the divergenceless vector
field expressed as a curl of a vector potential.
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FIG. 1. (a) In-plane stresses (per unit length) acting on a small element of an elastic sheet. (b) Torques per unit length acting on the same
element. (c) One-dimensional derivation of the normal force on a curved element 8! due to in-plane forces F. (d) Normal shears acting over

the sides of the elementary area of the sheet.

The resultant normal force on the element of the surface
can come from three sources. First is the external distributed
load, which, for the time being, we will ignore. Second, the
normal components of the in-plane tensions that act on the
element are nonzero due to the curvature of the surface. It is
easy to become convinced [see Fig. 1(c) for a one-
dimensional version of the derivation] that that normal force
per unit area due to the in-plane tension is 0 ,5C,5 [14].
Third, changing torques in the sheet produce a normal force.
To see this, we define the normal shear stresses Q, acting
over the sides of our surface element as shown in Fig. 1(d).
The normal force on the element due to the variation of these
shear stresses is clearly 0,0,6xdy. The normal shear
stresses O, can be found by balancing the moments about
the x and y axes of all the forces acting on the element that
gives 0,=dgM ,5. Collecting the normal forces we obtain
the second von Karman equation

(9a(93Ma5= U“BCG’B‘ (12)

The more familiar form of the von Karman equations
emerges when one substitutes the potentials f and yx into
Egs. (5) and (12) using Egs. (8) and (9) and the definition of
the potentials. They read

kVf=[x.f1,
(13)
1 Véy— 1
Y X= E[f’f]’
where we have defined
[a,b]= 6aMeBu(3a&Ba)((9ua,,b)
3a *b  9*a ¢*b #a *b

— = —2— . (14)

=— —+
ax? ay? ' 9y? ox?

Notice that [f,f] is twice the Gaussian curvature K.

In principle, the strains y,g and the curvatures C,g 0ob-
tained from the von Karman equations as a function of the
material coordinates define the surface uniquely (up to posi-
tion in R?). The problem of finding the shape of the surface
from the strains and the curvatures is, however, highly non-
linear and intractable in general. One can make progress in a
limited class of deformations in which the normal to the
surface does not change much. In that case the so-called
Monge coordinates are appropriate. The undeformed plate is
located in the x-y plane so that upon deformation the point
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originally at (x;,x,,0) moves to (x;+u;,x,+u,,w) in the
three-dimensional embedding space where u, and w are
functions of x,. If the derivatives of u, and w are small
everywhere, only the lowest nontrivial order terms in those
derivatives can be kept in the expressions for the strains and
the curvatures. We obtain [12]

1
yaﬂ=5(6auﬂ+aﬂua+8awaﬁw) (15)

and
Caﬂ=(9a(9ﬂw. (16)

It is clear that the normal displacement w in this case is
precisely the potential function f defined in Eq. (7).

To complete the description of the deformation of the thin
elastic plate one needs to be able to calculate the elastic
energy stored in the sheet and specify the boundary condi-
tions on the functions f and . We begin by considering the
work done on the small element of the surface dxJdy by the
surrounding parts of the plate when the strain in the element
changes by Jy,5. That work is 0,567,306x8y [14]. The
stretching energy E; in the plate element is found by inte-
grating the strain from O to its value y,g while keeping in
mind that the stresses are proportional to the strains, which
introduces a factor of 1/2. Thus the total stretching energy in
the plate is given by

1
Es=5f dxdya'aﬁyaﬁ. (17)

One can similarly show that the work done by the torques
M,z in bending a surface element is iM apCapdxdy, so
that the total bending energy E, in the plate is [14]

1 .
Expressing the strains, stresses, torques, and curvatures in
terms of the potentials y and f we get, after some algebra,

1
Es:mf dxdy[tr(9,95x) 1> —2(1+ v)det(d,dx),
(19)

K

Eb=2

f dxdy[tr(9,95)1* —2(1 — v)det(3 ,4f).
(20)

One can show that the conformation r(x,,x,) of the sheet
that is a solution of the von Karman equations minimizes the
elastic energy while satisfying the boundary conditions [23].
We note in passing that many derivations of the von Karman
equations (see, e.g., Ref. [11]) start with writing down these
energies in an ad hoc way and then taking a variational de-
rivative with respect to the sheet shape.

We are left to address the question of the boundary con-
ditions. As pointed out in Ref. [23], specification of the
boundary conditions for the von Karman equations is tricky
and is rarely done in a completely rigorous or even correct
manner. The main problem arises when a fixed shape of the
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FIG. 2. Long strip of width X bent through a dihedral angle
T—2a.

boundary in the embedding space is prescribed. Since the
equations are in terms of the material coordinates, the knowl-
edge of the shape in the embedding space requires solving
the equations first. Therefore, a boundary condition that
makes reference to the embedding space is intractable. Only
in the case when the material coordinates can be replaced
with the Monge coordinates mentioned above can one assign
a fixed shape to the boundary. In other cases the best one can
do is to specify the curvature tensor and the strain tensor at
the boundary of the material coordinates domain. One can
imagine pulling or pushing on the edge of the plate, which
amounts to specifying the stresses at the edges. Torques
M . and normal forces Q4 can also be applied at the edge.

We proceed to define the boundary value problem, which
exhibits the ridge singularity. We consider a strip (x,y)
e (—X/2,X/2)(—o0,») of uniform thickness # made of iso-
tropic homogeneous material with the Young modulus Y and
Poisson ratio v. Normal forces are applied to the edge so as
to bend the strip by an angle m— 2 « (see Fig. 2). The mem-
brane stresses o,z and the torques M,z vanish at the bound-
ary (except for the singular point y=0). In terms of the
potentials f and y it means that

ST

0,0pf=0,0px=0 at x== 21)

The condition that the strip is bent translates into specifying
the curvature tensor at the boundary. We assume that the
boundary is a geodesic of the surface, which is reasonable in
the small strain limit. In the direction along the boundary the
curvature is zero, except for a sharp peak at the origin
y=0, where the strip is bent. The width of the bent region
must be of the order of the thickness of the plate and the
curvature is of the order of the inverse thickness. It is con-
venient then to set the curvature along the boundary to a &
function since all the length scales in the problem are much
larger than A. This leads to a particularly simple condition on
f at the boundary

F(£X72,y)=aly| (22)

up to an arbitrary linear function of x,. To see that the
coefficient « is identical to the bending angle introduced
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above consider the following integral along the boundary (or
any other geodesic that approaches x = const):

of ©  Ff ° i
R T~ b EPEO
where we have used the definition of the curvature tensor
ny=¢9yﬁ-fy and the fact that the integral is taken along a
geodesic. Here 1 is the unit normal and t, is tangent vector to
the surface in the y direction [24]. The geometric meaning of
this integral is the length of the contour, which is inscribed
by the end of the normal vector fi on the unit sphere as n is
transported along the geodesic. Using this argument and a
reasonable belief that the solution far away from the ridge
approaches that of an unperturbed flat strip, one can deduce
that the derivative of the potential f along the transverse
direction y does not depend on x far away from the ridge.
This fact will later allow us to gain insight into the nature of
the solution.

The physical reason. one expects nontrivial singular be-
havior in the small thickness limit is the interplay between
the bending and the stretching energies. The key observation
is that the bending modulus « vanishes faster with the thick-
ness of the plate (as #3) than the stretching modulus Y4 [12],
so that thin plates bend in preference to stretching. There-
fore, in the limit of zero thickness, the bent plate develops a
sharp crease at which the solution is irregular (the curvature
in the y direction diverges). At a finite thickness, as shown in
Ref. [1], the crease softens to a characteristic width governed
by the competition of the bending and the stretching energies
in the region of the crease.

III. BOUNDARY LAYER SCALING

We first put the von Karman equations (13) in the nondi-
mensional form by defining

X . f  __x  __y
x=o f=% =% I=x (24)
to obtain
ViF=1x.f1.
_ 1 _ .
NVig=— 1., (25)
with the small dimensionless geometry parameter
- \/K/Y_(h) 1 26)
X X/) J12(1=%)

multiplying the highest derivative. The solution to the so-
called reduced problem defined by A =0 can be readily ob-
tained. There is no cost for bending and thus the strip forms
a sharp crease f(x,y) = a|y|. The properties of the boundary
layer that corrects the discontinuity in the reduced solution
can be found by the rescaling

y=\%y. (27)

F=NPF, x=\%, %=\,
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Note that x remains unchanged by the rescaling transforma-
tion and f and y are rescaled by the same factor to satisfy the
boundary condition (22). The rescaled equations read

I’f O’*F o*f N
S NS B T S B S
A [ﬂx4 2\ 82x&2y A 074y A [x.f1,
4 4 ~ 4 ~
B X I'x " x | .
2-6 2 A B 4ag? X\ _ ol
+2 ——=—=t+ == .
A [ 7 5 o’*“y} A z[f,f]
(28)

The dominant terms in the A —0 limit must be of the same
order on either side of the equations. This leads unambigu-
ously to 8<0, which is in agreement with the intuitive guess
that the width of the boundary layer must go to zero as the
thickness of the sheet vanishes. The balance of the dominant
terms gives

2
p==3. o=7, (29)

in agreement with the scaling argument of Witten and Li [1].
With the knowledge of the scaling behavior of the functions
f and x one can obtain the small thickness behavior of other
quantities such as, for example, the transverse ridge curva-
ture C,,=d*f/dy* and the midridge longitudinal strain
Yax=(UY) (0 —vo,,)=(1/Y) 3*x/3y*, where the expres-
sions are evaluated at x=0 and y=0. The leading-order be-
havior of the transverse stress o,,=d*x/dx* is of higher
order in N and it thus can be ignored in the expression for
Y. - Substituting the rescaled quantities we find that

1 Pf X
— -1/3 —2/3
Cpy=5M =\

&)';2 ) Vxx (95}-2 . (30)

These expressions give the asymptotic behavior of C,, and
Vxx since the rescaled quantities do not depend on A\ in the
small-\ limit.

Note that the width of the boundary layer has the same
leading-order behavior as the radius of curvature of the plate
at the center of the ridge and as the “sag,” which is the
vertical deflection of the ridge shape from that of perfectly
sharp crease. This deflection is given by f(0,0) in the small
dihedral angle limit a<<1. The sag can be found for a general
dihedral angle « from the following argument. Due to the
x— —x symmetry of the solution the ridge line y=0 is a
geodesic of the surface. Therefore we can relate the vertical
deflection of the sheet w(x) along the ridge to the curvature
C,,=d*f/3x>. To lowest order in the strain we obtain

w” 32
V1—(w')? ox

Since C,, vanishes in the limit of small thickness, the lead-
ing term in the N> expansion of w”(x) scales with the same
power of X as d%f/dx>. Thus the ridge sag w(0) is of the
same order as the ridge width and as the midridge transverse
radius of curvature.

We can also find asymptotic behavior of the bending and
stretching energies of the sheet. We first note that in the
expressions for the energies Egs. (19) and (20) the terms

@31
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involving det(d,dzf) and det(d,dpx) can be expressed as an
integral over the boundary [12]. These integrals vanish iden-
tically for the boundary conditions considered here. Substi-
tuting the rescaled quantities that remain finite as A—0 into
Egs. (19) and (20) we obtain

2 2
E,=r\"13 f dfc'd)?(ﬁ) , (32)

32~ 2
E,=x\"18 f didy"(;?i—/\;) , (33)

in agreement with the energy scaling argument of Witten and
Li [1]. For a fixed thickness, these energies grow qualita-
tively slower (as X 13y than the energy of a sharp crease of
size X, which grows linearly with X.

IV. SOLUTION TO THE REDUCED EQUATIONS

The solution to the rescaled equations (19) can be sought
as an expansion in powers of A%>,

F=Fo+ NBf Ny
X=XotNPx NPyt (34)
Plugging the series into Eq. (28) and matching the coeffi-

cients of powers of A*> we can obtain equations for all or-
ders in the expansion Eq. (34). We get, at zeroth order,

*fo
5 =[xo0.fol.
a* I Xo _
o= SUofol (35)
We note in passing the equations for f; and y;. They read
34f1 3*fo
il 2(9~2a~2—[X0 Jil+Ixafols
(36)
d*x1 7" Xo
ERa + 2;9—:23—4 ==[fo./1]-

At this point we must draw the readers’ attention to the fact
that while f and ¥ satisfy the boundary conditions Eq. (21)
or (22), there is no reason to expect that f, and xo do. In
other words, it is likely that the expansion in powers of
A%3 does not converge uniformly, so that for a fixed X higher
orders in the expansion Eq. (34) become increasingly impor-
tant as the boundary is approached. A solution of the zeroth-
order equations (35) might therefore be a good approxima-
tion to f and ¥ only in a restricted area around the ridge
away from the boundaries.

To help solve equations (35) we observe that the boundary
conditions do not introduce another length scale to the prob-
lem. Therefore, the transverse profile of the ridge ought to
scale with the distance from its midpoint x =0. We must find
a functional form of f; and x, such that the different
x= const slices are related to each other by a scale factor
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q(x) depending on x only. By assuming scaling in x we hope
to decouple it from the new transverse variable £=y/q(x).
We assume that

fo(X,6)=g"p1(&), xo(X,6)=q"p,(&). 37

As we show in the Appendix, variables separate for only one
choice of 7= w=1, which means that the width of the ridge
solution scales with the distance from the vertex in the same
way as the ridge sag. As mentioned above, the boundary
conditions on f require that its transverse derivative Jf/dy
approach a constant independent of x. If a similar condition
is to hold for f, then inescapably = 1. The validity of this
scaling hypothesis needs to be corroborated by some other
means. In Sec. VI we present numerical evidence supporting
this scaling ansatz; here we only note that this evidence is
convincing.
Substitution of the ansatz Eq. (37) into the zeroth-order
equations (35) gives
P =4q"¢*[pp2+pip1—
mno__

py =—q"¢*[pip:—

g(P1P2+P2P1)],
§P1P1]s (38)

where primes denote differentiation with respect to §. Sepa-
ration of variables provides the equation for the scale factor
q"g*>=A, where A is some constant. This equation, together
with the condition that g(x) be even can be solved by a

substitution g(g)=g'(x). The solution is
f=‘l‘[z—arcsin\/q(£) . q(f)(l_CI(f)”
T2 2(0)" Vq(0)\  q(0)/)

where the separation of variable constant is related to g(0)
via A= — mw2¢>3(0)/2. The scale factor ¢(¥) has a singular
derivative near the vertices, since for x=1/2—e€,

/3
q(€)= ( 3777) €3, (40)

which reinforces the suspicion that the series expansion (34)
does not converge uniformly.

Therefore, to test the predicted functional form of the
scale factor one ought to look at a local property of the
numerical solution away from the boundary and find its limit
as A—0. We discuss such a solution in Sec. VI. Numerically
one has access to only a limited range of thickness to size
ratios. (A cannot be too small; otherwise lattice effects be-
come significant.) Nevertheless, the Taylor expansion coeffi-
cients of the scale function g(x) around Xx=0 can be suc-
cessfully extracted from the numerics. Since there is one
adjustable parameter g(0), we must look at the first two
coefficients in the expansion ¢g(x)=g¢g(0)(1 +b2£2
b gt Expanding  Eq. (39), we find
b,=m?/4=2.47 and b,= 7*/48=2.03, whereas the numer-
ics gives b,=2.53*0.04 and b4,=2.09*0.07, where the er-
rors are obtained from the scatter of the data.

The transverse equations (38) can be integrated once by

defining
¢p(§)=pp(§) —Epp(§)  for B=1.2. (41)

We obtain
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. 2, . 2, 1 ) of interest are affected by the scale transformation. We start
1_E¢1=A¢1¢2+D17 2—E¢2=‘“5A¢1+Dz, with the simplest cases

(42)

where D g are the integration constants allowing for a non-
zero asymptote of the functions ¢ 4. The finite limit of these
functions as £é— o would imply a finite stress and curvature
far away from the ridge. However, since we expect the series
Eq. (34) to converge nonuniformly, the large-£ behavior of
¢ is likely to be unphysical. The functions p, can then be
readily found from

PA(E) =G+ e f ;dg—‘{’—%ii), “3)

where G are integration constants. A further analysis of the
transverse equations will be done elsewhere. Here we only
remark that the simplicity and the apparent symmetry of Egs.
(42) must point to some physical symmetry in the problem,
which forces this behavior to occur. Perhaps further light can
be shed on the physical meaning of the functions ¢4z by
writing down the expression for the elastic energy of the
sheet in terms of the separable solution. The leading term in
the A3 expansion of the total energy as in Eq. (33) reads

~ 3~ 1 1AW "2
E= dxdy;[(pl) +(p3

= 2 2
el @] w
q(x)) & |\ d¢ d§

We can also make contact with the boundary condition
f—al|y| as y—oo. If the integral in Eq. (43) converges, this
boundary condition gives G;=«. Now one can use the
y— —y symmetry of the problem and sufficient smoothness

of functions involved to conclude that p{(0) =0, which leads
to

=dfdg.()
o & d¢

—a. (45)

V. DIHEDRAL ANGLE SCALING OF THE SEPARABLE
SOLUTION

Even without having solved the transverse equations one
can deduce the behavior of the solution for different dihedral
angles «a just from the form of the Egs. (42). We begin by
noting that there exists a two-parameter family of transfor-
mations that produce alternative solutions. For example, if
(Zv( &) is a two-component solution, then zZ( 5H=S 1(5(525) is
also a solution of Egs. (42), but with a different separation of
variable constant A’ =S53/§,A. We must allow for variation
of A since it will undoubtedly depend on the dihedral angle.
Using the boundary condition on ¢; Eq. (45) we can find the
corresponding dihedral angle a’=S,S,a. With this condi-
tion, there is a one-parameter family of scale transformations
that produce a solution for the dihedral angle a’ given that
for the dihedral angle «. Let us fix a reference solution J’o
with @=1 so that all other solutions are labeled by the scale
factors §; and S,. We can now find how various quantities

a~S152,
P1~P2~ Sy,
q~A1/3~S{'1/3S%/3. (46)

The relevant quantities such as the ridge sag gp;, the trans-
verse curvature in the middle of the ridge (1/g)p], both
evaluated at x=£=0, and the elastic energy Eq. (44) all turn
out to depend only on the product of the scaling factors
S1S,, which determines unambiguously their scaling with
the dihedral angle . Using Egs. (45) we get

gpi~S7 P58, ~ a?’,
(1/g)p~S1753°5,53~ ™",
f dx df(d ¢
q(¥)) & \dé
One can also predict how the width of the ridge that scales
with S5, ! depends on the dihedral angle « using one extra
assumption. If the transverse curvature decays exponentially

away from the ridge then the width of the ridge scales as the
radius of curvature times the bend angle a. Therefore

2
) ~Si/3S2—2/3S%Sg~a7/3. (47)

W~S; ' ~a 13, (48)

where 77" denotes ridge width. This equation fixes the de-
pendence of the scale factors §; and S, on « so that solu-
tions for all dihedral angles can be generated from a single
solution for some a. All of the a-scaling predictions have
been convincingly verified by the numerics.

VI. NUMERICAL SIMULATION OF THE STRETCHING
RIDGE

We modeled an elastic sheet as a triangular lattice of
springs of unstretched length a and spring constant X after
Seung and Nelson [11]. Bending rigidity is introduced by
assigning an energy J(1—n,-N,) to every pair of adjacent
lattice triangles with normals fi; and f,. Seung and Nelson
showed that this model membrane is equivalent to a sheet of
thickness 2#=a+8J/K made of isotropic homogeneous ma-
terial with the Young modulus Y =2Ka/h\/§ and Poisson
ratio v=1/3. The bending modulus is k=J\3/2. We use a
conjugate gradient energy minimization routine to obtain a
sequence of relaxed shapes with the varying geometric pa-
rameter A. This lattice model has been used by the author
and others to verify the N\ scaling [21]. Here we explore the
other two types of scaling, which we are convinced govern
the ridge properties.

A rather suggestive demonstration of the g(x) scaling is
presented in Fig. 3. We plot the transverse curvatures for
different slices x = const obtained from a simulated strip of
dimensions 50a X 500a bent by normal forces applied to the
x=*X/2 parts of the boundary to make a 90° angle. The
dimensionless thickness is A=1073. The curvature for each
slice is scaled by its value at the origin y =0. The transverse
coordinate is scaled by the inverse of the curvature at y=0.
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FIG. 3. Transverse curvatures C,,(x,y) for x=0 (circles),
x=5 (squares), x=10 (triangles), and x=15 (diamonds), each
scaled by C,,(x,0) vs the transverse coordinate y scaled by
C;yl(x,O). The curvatures are found numerically from a
50a X 500a strip bent by a 90° angle.

These profiles collapse onto a single scaling curve. A more
quantitative test is based on the prediction for the variation
of the transverse radius of curvature along the ridge (i.e., at
£=0) R,,=1/C,,~q(x). The coefficients b, and b, in the
expansion R,,(X)=R,,(0)(1+ b,i2+b,%%) can be ex-
tracted from the numerics and compared to those obtained
from Eq. (39).

Here we can also test the dependence of the scaling on the
boundary conditions, which cause the ridge singularity. In-
stead of using a long strip bent by normal forces applied to
the boundaries we can consider any shape that in the limit of
zero thickness exhibits a sharp crease. One such shape cho-
sen due to ease of implementation is a regular tetrahedron,
which was previously used to verify the N\ scaling [21]. A
picture of one such minimum-energy tetrahedral surface is
presented in Fig. 4. Shading is proportional to the local
stretching energy. Figure 5 displays a plot of the coefficients
b, (circles) and b, (squares) versus the dimensionless thick-
ness A obtained by a least-squares fit to the functional forms
of R,, in the range of |%|<0.2 for tetrahedra of varying
thicknesses but fixed edge length X=100a. We see that
these coefficients have a well defined limit as A — 0, which is
approached algebraically. The extrapolations to A=0 give
b,=2.53*0.04 and b,=2.09%+0.07, as compared to the pre-
dicted values of b,=2.47 and b,=2.03.

We tested the dihedral angle scaling by making a long
rectangular strip of dimensions 50a X 200a and applying nor-
mal forces to its long boundaries so as to bend it by an angle
a. For all angles we fixed A=5X107%. The results are dis-
played in Figs. 6 and 7. Figure 6 is a plot of the total elastic
energy in units of the bending modulus « vs the anticipated
scaling variable a”?. To a good precision the energy does
indeed exhibit the predicted scaling behavior. The deviation
at the small bending angles is due to the finite-size effects.
Since the width of the ridge diverges as a— 0, larger sheets
are needed for smaller angles to avoid finite-size effects. In
Fig. 7 the midridge curvature C,,(0) in units of X ~!is plot-
ted against a*3. The data agree well with the scaling predic-
tion.

3757

FIG. 4. thickness

Tetrahedron of
h=0.063a. Shading is proportional to the local stretching energy.
Note the “sagging” of the ridge.

side X=100a and

Another test relevant to the question of the boundary con-
dition dependence of the scaling predictions is the compari-
son of the coefficients R for different boundary conditions in
the asymptotic form of the total elastic energy of the ridge
E/k=R\""3a3, In a previous work [21] we found this
coefficient for the ridge appearing in the tetrahedral shape
described above. Its value, which was found by examining
the dependence of the energy on A\ for a fixed dihedral angle,
is R=1.161£0.003. For the long strip we have found
Rip=1.24%0.01 by fixing N and varying «. Here the error
range reflects only the uncertainty arising from scatter in the
numerical data. However, there are additional errors resulting
from corrections to the asymptotic scaling not properly ac-
counted for in our crude fitting procedure. We therefore sus-
pect that the scaling coefficient R depends insensitively on

n w
e} N
T T
1 1

Expansion Coefficients
N
»
T
1

0 0.0002 0.0003

A

FIG. 5. Scale factor expansion coefficients b, (circles) and b,
(squares) as extracted from a least-squares fit to the functional form
of the transverse radius of curvature along the ridge for a tetrahedra
of X=100a.
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FIG. 6. Total elastic energy in units of the bending modulus « of
50a X 200a strips of thickness #=0.063a bent by an angle a.

the boundary conditions and varies only by a fraction of its
value. A stronger claim of boundary condition independence
of R would require a more convincing demonstration.

VII. DISCUSSION

In this paper we described the ridge singularity in thin
elastic plates which arises under certain types of boundary
conditions. We have found three types of scaling in the ridge
solution in the asymptotic limit of small thickness of the
elastic sheet. The solution scales with the thickness of the
sheet in a nontrivial way. In addition, it might scale with the
distance from the center of the ridge and with the dihedral
angle of the ridge. To ascertain the importance of the results
we ought to discuss the degree to which the nature of the
ridge singularity is independent of the boundary conditions.
First we note that the equations used to describe the behavior
of the elastic sheet assumed linear stress-strain relations.
Since the strains in the ridge were found to vanish in the
limit of small thickness, the results should be applicable to
the real materials in which the linear stress-strain relations
are more accurate at small strains.

XC

WL

FIG. 7. Midridge curvature in units of X ! for the 50a X 200a

strips of thickness £=0.063a vs the anticipated scaling variable
413
a™’.
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The N scaling that was anticipated from previous works
[1,21] has been put on a more rigorous footing. It seems to
be inevitable and depends only on the geometry of the sin-
gularity. It is by no means a unique type of scaling, since
Scheidl and Troger [25] found that a ring ridge that appears
in strong buckling of a spherical shell has a width that scales
as A2 as opposed to the N3 scaling for the straight ridge
singularity examined in this article. The property that makes
the straight ridge important is that its energy grows slower
with size than that of the ring ridge, which makes the ring
ridge unstable to breakup into straight ridges when the cost
of distorting the rest of the sphere can be overcome by the
energy gain from the formation of the straight ridges. We
believe therefore that straight ridges will be the dominating
type of the singularity in crumpled thin elastic sheets. The
morphology of a crumpled sheet can thus be represented as a
network of straight ridges. Since in the limit of small thick-
ness the elastic energy is concentrated into a progressively
smaller fraction of the crumpled sheet, the ridges can at least
in the first approximation be treated as independent. There-
fore, once the ridge network is given characterization in
terms of the distribution of the lengths and the dihedral
angles of the ridges, the elastic energy of the crumpled sheet
is given by the sum E/KZRZi)\i_maZB

The second type of scaling found in the ridge singularity
is scaling with the distance from the center x=0. By assum-
ing this scaling we are led to a separable dependence on the
longitudinal and the transverse position. Neither the scaling
nor the separability, however, has been proven. We have only
found suggestive numerical evidence supporting separability
by examining different slices of the ridge as in Fig. 3. In
addition, the first two coefficients in the Taylor expansion of
the scale factor g(x) have been found to agree with the nu-
merics. A more rigorous test of separability is still needed.
The transverse profile of the ridge is most probably depen-
dent on the boundary conditions. In Refs. [21,26] the present
author and others found that the degree to which the trans-
verse curvature oscillated away from the ridge in the tetra-
hedron shape is different from that in the strip shape consid-
ered in this work. The simplicity of the transverse equations
also needs to be better understood. Usually such simplicity
reflects some underlying physical symmetry in the problem.

The third type of scaling exhibited by the ridge solution is
the dihedral angle scaling. This scaling only depended on the
form of the transverse equations and not on the nature of
their solution and thus is likely to be independent of the
boundary conditions. Numerical evidence in Figs. 6 and 7
supports this conclusion. In addition, we found the same di-
hedral angle scaling in the strip shape as in the rhombus
“kite” shape of Ref. [21].

In future work we plan to analyze the transverse equations
and relate them to the boundary conditions in order to clarify
whether they possess boundary condition independent fea-
tures. A study of how nonasymptotic effects affect the valid-
ity of the separable solution is also in order. The framework
developed in this paper is suitable to the study of ridges
under loading, which is relevant to mechanical properties of
crumpled sheets. One could also introduce thermal shape
fluctuations to study how they affect the scaling properties of
the singularity, in particular, whether the singular behavior is
robust with respect to introduction of the fluctuations.
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APPENDIX

To show that Egs. (35) separate only for one choice of the
scaling exponents u and 7 in the scaling ansatz Eq. (37) we
carry out the substitution for general exponents. We obtain

PV =q"q" [ mpip2+upipi—E(pips+pip)]
+(g")?q"{n(n—1)p ps+p(p—1)p5p1—2(pn—1)
X(n—1)pips},

Py =—q"¢** " [ upip—&pipi1+(q')q* 7

X{(u=1)*(p))?*—p(u—1)pipi}. (A1)

The separation-of-variables conditions on the scale function
g(%) demand that g"q7*'=A, and ¢q"¢**~"*1=A,, which
require that = 7. Unless the factors in curly brackets van-
ish, separability also demands that (g')?’¢”7=A; and
(g")*q**~"=A,. From the A, and A5 conditions it follows
that ¢"g=(A,/A3)(q’')?, which implies that g’'ccg?1/43,
Since we require that ¢’ (0)=0 and g(0)#0, one of the
following two conditions must be true. First A; may vanish,
which leads to an unphysical choice ¢”=0. Second, the fac-
tors in curly brackets may vanish, which happens only if
m=7n=1. We conclude that indeed u= =1, as asserted in
the text.
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FIG. 4. Tetrahedron of side X=100a and thickness
h=0.063a. Shading is proportional to the local stretching energy.
Note the “‘sagging” of the ridge.



